Some third-order irregular boundary value problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME BOUNDARY VALUE PROBLEMS FOR A NON-LINEAR THIRD ORDER O.D.E.

Existence of periodic solutions for non-linear third order autonomous differential equation (O.D.E.) has not been investigated to as large an extent as non-linear second order. The popular Poincare-Bendixon theorem applicable to second order equation is not valid for third order equation (see [3]). This conclusion opens a way for further investigation.

متن کامل

Existence of Solutions for Some Third-order Boundary-value Problems

In this paper concerns the third-order boundary-value problem u′′′(t) + f(t, u(t), u′(t), u′′(t)) = 0, 0 < t < 1, r1u(0)− r2u(0) = r3u(1) + r4u(1) = u′′(0) = 0. By placing certain restrictions on the nonlinear term f , we prove the existence of at least one solution to the boundary-value problem with the use of lower and upper solution method and of Schauder fixed-point theorem. The constructio...

متن کامل

numerical solution of third-order boundary value problems

in this paper, we use a third degree b-spline function to construct an approximate solution forthird order linear and nonlinear boundary value problems coupled with the least square method. severalexamples are given to illustrate the efficiency of the proposed technique.

متن کامل

On two classes of third order boundary value problems with finite spectrum

‎The spectral analysis of two classes of third order boundary value problems is investigated‎. ‎For every positive integer $m$ we construct two classes of regular third order boundary value problems with at most $2m+1$‎ ‎eigenvalues‎, ‎counting multiplicity‎. ‎These kinds of finite spectrum results are previously known only for even order boundary value problems‎.

متن کامل

some boundary value problems for a non-linear third order o.d.e.

existence of periodic solutions for non-linear third order autonomous differential equation (o.d.e.) has not been investigated to as large an extent as non-linear second order. the popular poincare-bendixon theorem applicable to second order equation is not valid for third order equation (see [3]). this conclusion opens a way for further investigation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1927

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1927-1501411-3